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ABSTRACT
We study the properties and asymptotics of the Jacobimatrices associatedwith equilibriummeasures
of the weakly equilibrium Cantor sets. These family of Cantor sets were defined, and different aspects
of orthogonal polynomials on them were studied recently. Our main aim is to numerically examine
some conjectures concerning orthogonal polynomials which do not directly follow from previous
results. We also compare our results with more general conjectures made for recurrence coefficients
associated with fractal measures supported onR.

1. Introduction

For a unit Borel measure μ with an infinite compact sup-
port on R, using the Gram–Schmidt process for the set
{1, x, x2, . . .} in L2(μ), one can find a sequence of poly-
nomials (qn(·; μ))∞n=0 satisfying∫

qm(x; μ)qn(x; μ) dμ(x) = δmn

where qn(·; μ) is of degree n. Here, qn(·; μ)) is called
the nth orthonormal polynomial for μ. We denote its
positive leading coefficient by κn and nth monic orthog-
onal polynomial qn(·; μ)/κn by Qn(·; μ). If we assume
thatQ−1(·; μ) := 0 andQ0(·; μ) := 1, then there are two
bounded sequences (an)∞n=1, (bn)∞n=1 such that the poly-
nomials (Qn(·; μ))∞n=0 satisfy a three-term recurrence
relation

Qn+1(x; μ) = (x − bn+1)Qn(x; μ) − a2n Qn−1(x; μ),

n ∈ N0,

where an > 0, bn ∈ R and N0 = N ∪ {0}.
Conversely, if two bounded sequences (an)∞n=1 and

(bn)∞n=1 are given with an > 0 and bn ∈ R for each n ∈ N,
then we can define the corresponding Jacobi matrix H ,
which is a self-adjoint bounded operator acting on l2(N),
as the following,

H =

⎛⎜⎜⎜⎜⎜⎝
b1 a1 0 0 . . .

a1 b2 a2 0 . . .

0 a2 b3 a3 . . .
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ . (1–1)
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The (scalar valued) spectral measure μ of H for the
cyclic vector (1, 0, . . .)T is the measure that has (an)∞n=1
and (bn)∞n=1 as recurrence coefficients. Due to this one-to-
one correspondence between measures and Jacobi matri-
ces, we denote the Jacobi matrix associated with μ byHμ.
For a discussion of the spectral theory of orthogonal poly-
nomials on R, we refer the reader to [Simon 11, Van Ass-
che 87].

Let c = (cn)∞n=−∞ be a two-sided sequence taking val-
ues on C and c j = (cn+ j)

∞
n=−∞ for j ∈ Z. Then c is called

almost periodic if {c j} j∈Z is precompact in l∞(Z). A
one-sided sequence d = (dn)∞n=1 is called almost peri-
odic if it is the restriction of a two-sided almost periodic
sequence to N. Each one-sided almost periodic sequence
has only one extension to Z which is almost periodic, see
Section 5.13 in [Simon 11]. Hence, one-sided and two-
sided almost periodic sequences are essentially the same
objects. A Jacobi matrixHμ is called almost periodic if the
sequences of recurrence coefficients (an)∞n=1 and (bn)∞n=1
for μ are almost periodic. We consider in the following
sections only one-sided sequences due to the nature of our
problems but, in general, for the almost periodicity, it is
much more natural to consider sequences on Z instead of
N.

A sequence s = (sn)∞n=1 is called asymptotically almost
periodic if there is an almost periodic sequence d =
(dn)∞n=1 such that dn − sn → 0 as n → ∞. In this case,
d is unique and it is called the almost periodic limit. See
[Petersen 83, Simon 11, Teschl 00] for more details on
almost periodic functions.

Several sufficient conditions on Hμ to be almost peri-
odic or asymptotically almost periodic are given in
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[Peherstorfer and Yuditskii 03, Sodin and Yuditskii 97]
for the case when ess supp(μ) (that is the support of
μ excluding its isolated points) is a Parreau–Widom set
(Section 3) or in particular homogeneous set in the sense
of Carleson (see [Peherstorfer and Yuditskii 03] for the
definition). We remark that some symmetric Cantor sets
and generalized Julia sets (see [Peherstorfer and Yudit-
skii 03, Alpan and Goncharov 15b]) are Parreau–Widom.
By [Barnsley et al. 85, Yudistkii 12], for equilibrium mea-
sures of some polynomial Julia sets, the corresponding
Jacobi matrices are almost periodic. It was conjectured
in [Mantica 97, Krüger and Simon 15] that Jacobi matri-
ces for self-similar measures including the Cantor mea-
sure are asymptotically almost periodic. We should also
mention that some almost periodic Jacobi matrices with
applications to physics (see e.g., [Avila and Jitomirskaya
09]) have essential spectrum equal to a Cantor set.

There are many open problems regarding orthogonal
polynomials on Cantor sets, such as how to define the
Szegő class of measures and isospectral torus (see e.g.,
[Christiansen et al. 09, Christiansen et al. 11] for the pre-
vious results and [Heilman et al. 11, Krüger and Simon
15, Mantica 96, Mantica 15a, Mantica 15b] for possible
extensions of the theory and important conjectures) espe-
cially when the support has zero Lebesgue measure. The
family of sets that we consider here contains both posi-
tive and zero Lebesguemeasure sets, Parreau–Widomand
non-Parreau–Widom sets.

Widom–Hilbert factors (see Section 2 for the defini-
tion) for equilibrium measures of the weakly equilibrium
Cantor sets may be bounded or unbounded depending
on the particular choice of parameters. Some properties
of these measures related to orthogonal polynomials were
already studied in detail, but till now we do not have
complete characterizations ofmost of the propertiesmen-
tioned above in terms of the parameters. Our results and
conjectures are meant to suggest some formulations of
theorems for further work on these sets as well as other
Cantor sets.

The plan of the article is as follows. In Section 2, we
review the previous results onK(γ ) and provide evidence
for the numerical stability of the algorithm obtained in
Section 4 in [Alpan and Goncharov 16] for calculating
the recurrence coefficients. In Section 3, we discuss the
behavior of recurrence coefficients in different aspects and
propose some conjectures about the character of period-
icity of the Jacobi matrices. In Section 4, the properties
of Widom factors are investigated. We also prove that the
sequence of Widom–Hilbert factors for the equilibrium
measure of autonomous quadratic Julia sets is unbounded
above as soon as the Julia set is totally disconnected. In
the last section, we study the local behavior of the spacing

properties of the zeros of orthogonal polynomials for the
equilibrium measures of weakly equilibrium Cantor sets
and make a few comments on possible consequences of
our numerical experiments.

For a general overview on potential theory, we refer
the reader to [Ransford 95, Saff and Totik 97]. For a
non-polar compact set K ⊂ C, the equilibrium measure
is denoted by μK while Cap(K) stands for the logarith-
mic capacity of K. The Green function for the connected
component of C \ K containing infinity is denoted by
GK (z). Convergence of measures is understood as weak-
star convergence. For the sup norm on K and for the
Hilbert norm on L2(μ), we use ‖ · ‖L∞(K) and ‖ · ‖L2(μ),
respectively.

2. Preliminaries and numerical stability of
the algorithm

Let us repeat the construction of K(γ ) which was intro-
duced in [Goncharov 14]. Let γ = (γs)

∞
s=1 be a sequence

such that 0 < γs < 1/4 holds for each s ∈ N provided
that

∑∞
s=1 2

−s log (1/γs) < ∞. Set r0 = 1 and rs = γsr2s−1.
We define ( fn)∞n=1 by f1(z) := 2z(z − 1)/γ1 + 1 and
fn(z) := z2/(2γn) + 1 − 1/(2γn) for n > 1. Here E0 :=
[0, 1] and En := F−1

n ([−1, 1]) where Fn is used to denote
fn ◦ · · · ◦ f1. Then, En is a union of 2n disjoint non-
degenerate closed intervals in [0, 1] and En ⊂ En−1 for all
n ∈ N. Moreover, K(γ ) := ∩∞

n=0En is a non-polar Cantor
set in [0, 1] where {0, 1} ⊂ K(γ ). It is not hard to see that
for each different γ we end up with a different K(γ ).

It is shown in Section 3 of [Alpan and Goncharov 16]
that for all s ∈ N0 we have

||Q2s
(·; μK(γ )

) ||L2(μK(γ ) ) =
√

(1 − 2 γs+1) r2s /4. (2–1)

The diagonal elements, the bn’s of HμK(γ )
, are equal to

0,5 by Section 4 in [Alpan and Goncharov 16]. For the
outdiagonal elements by Theorem 4.3 in [Alpan andGon-
charov 16], we have the following relations:

a1 = ‖Q1
(·; μK(γ )

) ‖L2(μK(γ ) ), (2–2)

a2 = ‖Q2
(·; μK(γ )

) ‖L2(μK(γ ) )/‖Q1
(·; μK(γ )

) ‖L2(μK(γ ) ).

(2–3)

If n + 1 = 2s > 2 then

an+1

=
||Q2s

(·; μK(γ )

) ||L2(μK(γ ))

||Q2s−1
(·; μK(γ )

) ||L2(μK(γ ) ) · a2s−1+1 · a2s−1+2 · · · a2s−1
.

(2–4)
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If n + 1 = 2s(2k + 1) for some s ∈ N and k ∈ N, then

an+1

=

√√√√‖Q2s
(·; μK(γ )

) ‖2L2(μK(γ ) )
− a22s+1k · · · a22s+1k−2s+1

a22s(2k+1)−1 · · · a22s+1k+1
,

(2–5)

If n + 1 = (2k + 1) for k ∈ N then

an+1 =
√

‖Q1
(·; μK(γ )

) ‖2L2(μK(γ ) )
− a22k. (2–6)

The relations (2–1), (2–2), (2–3), (2–4), (2–5), and
(2–6) completely determine (an)∞n=1 and naturally define
an algorithm. This is the main algorithm that we use and
we call it Algorithm 1. There are a couple of results for the
asymptotics of (an)∞n=1, see Lemma 4.6 and Theorem 4.7
in [Alpan and Goncharov 16].

We want to examine the numerical stability of Algo-
rithm 1 since roundoff errors can be huge due to the
recursive nature of it. Before this, let us list some
remarkable properties of K(γ ) which will be consid-
ered later on. In the next theorem, one can find proofs
of part (a) in [Alpan and Goncharov 14], (b) and (c)
in [Alpan and Goncharov 16], (d) and (e) in [Alpan
and Goncharov 15b], ( f ) in [Alpan et al. 16], (g) in
[Goncharov 14], and (h) and (i) in [Alpan 16]. We call
W 2

n (μ) := ‖Qn(·;μ)‖L2 (μ)

(Cap(supp(μ)))n
as thenthWidom–Hilbert factor

for μ.

Theorem 2.1. For a given γ = (γs)
∞
s=1 let εs := 1 − 4γs.

Then the following propositions hold:
(a) If

∑∞
s=1 γs < ∞ and γs ≤ 1/32 for all s ∈ N then

K(γ ) is of Hausdorff dimension zero.
(b) If γs ≤ 1/6 for each s ∈ N then K(γ ) has zero

Lebesgue measure, μK(γ ) is purely singular contin-
uous and lim inf an = 0 for μK(γ ).

(c) Let f̃ := ( f̃s)∞s=1 be a sequence of functions such that
f̃s = fs for 1 ≤ s ≤ k for some k ∈ N and f̃s(z) =
2z2 − 1 for s > k. Then ∩∞

n=1F̃−1
n ([−1, 1]) = Ek

where F̃n := f̃n ◦ · · · ◦ f̃1.
(d) GK(γ ) isHölder continuouswith exponent 1/2 if and

only if
∑∞

s=1 εs < ∞.
(e) K(γ ) is a Parreau–Widom set if and only if∑∞

s=1
√

εs < ∞.
(f) If

∑∞
s=1 εs < ∞ then there is C > 0 such that for all

n ∈ N we have

W 2
n (μK(γ )) =

‖Qn
(·; μK(γ )

) ‖L2(μK(γ ) )

(Cap(K(γ )))n

= a1 . . . an
(Cap(K(γ )))n

≤ Cn.

(g) Cap(K(γ )) = exp (
∑∞

k=1 2
−k log γk).

(h) Let v1,1(t ) = 1/2 − (1/2)
√
1 − 2γ1 + 2γ1t and

v2,1(t ) = 1 − v1,1(t ). For each n > 1, let
v1,n(t ) = √

1 − 2γn + 2γnt and v2,n(t ) =
−v1,n(t ). Then the zero set of Q2s (·; μK(γ )) is
{vi1,1 ◦ · · · ◦ vis,s(0)}is∈{1,2} for all s ∈ N.

(i) supp(μK(γ )) = ess supp(μK(γ )) = K(γ ). If K(γ )

= [0, 1] \ ∪∞
k=1(ci, di) where ci �= d j for all i, j ∈

N then μK(γ )([0, ei]) ⊂ {m2−n}m,n∈N where ei ∈
(ci, di). Moreover for each m ∈ N and n ∈ N

with m2−n < 1 there is an i ∈ N such that
μK(γ )([0, ei]) = m2−n.

We consider four different models depending on γ in
the whole article. They are:

(1) γs = 1/4 − (1/(50 + s)4).
(2) γs = 1/4 − (1/(50 + s)2).
(3) γs = 1/4 − (1/(50 + s)(5/4).

(4) γs = 1/4 − (1/50).
Model 1 represents an example whereK(γ ) is Parreau-

Widom and Model 2 gives a non-Parreau-Widom set
such that (γk)

∞
k=1 tends to 1/4. Model 3 produces a non-

Parreau–Widom K(γ ) with relatively slow growth of γ

but still GK(γ ) is optimally smooth. Model 4 yields a set
which is neither Parreau–Widom nor the Green function
for the complement of it is optimally smooth. We used
Matlab in all of the experiments.

If f is a nonlinear polynomial of degree n having real
coefficientswith real and simple zeros x1 < x2 < · · · < xn
and distinct extremas y1 < . . . < yn−1 where | f (yi)| > 1
for i = 1, 2, · · · , n − 1, we say that f is an admissible
polynomial. Clearly, for any choice of γ , fn is admissible
for each n ∈ N, and this implies by Lemma 4.3 in [Alpan
and Goncharov 15b] that Fn is also admissible. By the
remark after Theorem 4 and Theorem 11 in [Geronimo
and Van Assche 88], it follows that the Christoffel num-
bers (see p. 565 in [Geronimo and Van Assche 88] for the
definition) for the 2nth orthogonal polynomial of μEn are
equal to 1/2n. Let μn

K(γ ) be the measure which assigns
1/2n mass to each zero of Q2n (·; μK(γ )). From Remark
4.8 in [Alpan and Goncharov 16] the recurrence coeffi-
cients (ak)2

n−1
k=1 , (bk)

2n
k=1 for μEn are exactly those of μK(γ ).

This implies that (see e.g., Theorem 1.3.5 in [Simon 11])
the Christoffel numbers corresponding to 2nth orthogo-
nal polynomial for μK(γ ) are also equal to 1/2n.
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Let

Hμn
K(γ )

=

⎛⎜⎜⎜⎜⎜⎜⎝

b1 a1
a1 b2 a2

a2
. . . . . .
. . . . . . a2n−1

a2n−1 b2n

⎞⎟⎟⎟⎟⎟⎟⎠ , (2–7)

where the coefficients (ak)2
n−1
k=1 , (bk)2

n

k=1 are the Jacobi
parameters for μK(γ ). Then, the set of eigenvalues of
Hμn

K(γ )
is exactly the zero set of Q2n (·; μK(γ )). Moreover,

by [Golub and Welsch 69], the square of first compo-
nent of normalized eigenvectors gives one of the Christof-
fel numbers, which in our case is equal to 1/2n. For
each n ∈ {1, . . . , 14}, using gauss.m, we computed the
eigenvalues and first component of normalized eigenvec-
tors of Hμn

K(γ )
where the coefficients are obtained from

Algorithm 1. We compared these values with the zeros
obtained by part (h) of Theorem 2.1 and 1/2n, respec-
tively. For each n, let {tnk }2

n

k=1 be the set of eigenvalues for
Hμn

K(γ )
and {qnk}2

n

k=1 be the set of zeros where we enumer-
ate these sets so that the smaller the index they have, the
value will be smaller. Let {wn

k }2
n

k=1 be the set of squared
first component of normalized eigenvectors. We plot-
ted (see Figures 1 and 2) R1

n := (1/2n)(
∑2n

k=1 |tnk − qnk |)
and R2

n := (1/2n)(
∑2n

k=1 |(1/2n) − wn
k |). This numerical

experiment shows the reliability of Algorithm 1. One can
compare these values with Figure 2 in [Mantica 15b].

3. Recurrence coefficients

It was shown (for the stretched version of this set but
similar arguments are valid for this case also) in [Alpan
and Goncharov 15b] that K(γ ) is a generalized poly-
nomial Julia set (see e.g., [Brück 01, Brück and Büger
03, Büger 97] for a discussion on generalized Julia
sets) if inf γk > 0, that is K(γ ) := ∂{z ∈ C : Fn(z) →
∞ locally uniformly}. Let J( f ) be the (autonomous) Julia
set for f (z) = z2 − c for some c > 2. Since ( fn)∞n=1 is a
sequence of quadratic polynomials, it is natural to ask that
to what extent HμJ( f ) and HμK(γ )

have similar behavior.
Compare for example Theorem 4.7 in [Alpan and Gon-
charov 16] with Section 3 in [Bessis et al. 88].

The recurrence coefficients for μJ( f ) can be ordered
according to their indices, see (IV.136)–(IV.138) in [Bessis
90]. We obtain similar results for μK(γ ) in our numeri-
cal experiments in each of the four models. That is, the
numerical experiments suggest that mini∈{1,...,2n} ai = a2n
for n ≤ 14, and it immediately follows from (2–2) and
(2–6) that maxn∈N an = a1. Thus, we make the following
conjecture:

Conjecture 3.1. For μK(γ ) we have mini∈{1,...,2n} ai = a2n
and in particular lim inf s→∞ a2s = lim infn→∞ an.

A non-polar compact set K ⊂ R which is regular with
respect to the Dirichlet problem is called a Parreau–
Widom set if

∑∞
k=1 GK (ek) < ∞ where {ek}k is the set

of critical points, which is at most countable, of GK .
Parreau–Widom sets have positive Lebesgue measure. It
is also known that (see e.g., Remark 4.8 in [Alpan and
Goncharov 16]) lim inf an > 0 for μK provided that K is
Parreau–Widom. For more on Parreau–Widom sets, we
refer the reader to [Christiansen 12, Yudistkii 12].

By part (e) of Theorem 2.1, lim inf an > 0 for
μK(γ ) provided that

∑∞
s=1

√
εs < ∞. It also follows

from Remark 4.8 in [Alpan and Goncharov 16] and
[Dombrowski 78] that if the an’s associated with μK(γ )

satisfy lim inf an = 0 then K(γ ) has zero Lebesgue
measure. Hence asymptotic behavior of the an’s is also
important for understanding the Hausdorff dimension
of K(γ ). We computed vn := a2n/a2n+1 (see Figures 3
and 4) for n = 1, . . . , 13 in order to find for which
γ ’s lim inf an = 0. We assume here Conjecture 3.1 is
correct.

InModel 1, vn is very close to 1 which is expected since
for this case lim inf an > 0. In other models, it seems that
(vn)

13
n=1 seems to behave like a constant. Thus, this exper-

iment can be read as follows: If
∑∞

s=1
√

εs < ∞ does not
hold then lim inf an = 0. So, we conjecture:

Conjecture 3.2. For a given γ = (γk)
∞
k=1, let εk := 1 −

4γk for each k ∈ N. Then K(γ ) is of positive Lebesgue
measure if and only if

∑∞
s=1

√
εs < ∞ if and only if

lim inf an > 0.

Amore interesting problem is whetherHμK(γ )
is almost

periodic or at least asymptotically almost periodic. Since
(bn)∞n=1 is a constant sequence, we only need to deal with
(an)∞n=1.

For a measure μ with an infinite compact support
supp(μ), let δn be the normalized counting measure on
the zeros ofQn(·; μ). If there is a ν such that δn → ν then
ν is called the density of states (DOS) measure for Hμ.
Besides,

∫ x
−∞ dν is called the integrated density of states

(IDS). For HμK(γ )
, the DOS measure is automatically (see

Theorem 1.7 and Theorem 1.12 in [Simon 11] and also
[Widom 67]) μK(γ ). Therefore, if x is chosen from one of
the gaps (by a gap of a compact set on K ⊂ R we mean
a bounded component of R \ K) of supp(μK(γ )), that is
x ∈ (ci, di) (see part (i) of Theorem 2.1), then the value of
the IDS is equal tom2−n which does not exceed 1 and also
for each m, n ∈ N with m2−n < 1 there is a gap (c j, d j)

such that the IDS takes the valuem2−n.
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Figure . Errors associated with eigenvalues.

For an almost periodic sequence c = (cn)∞n=1, the Z-
module of the real numbers modulo 1 generated by ω

satisfying{
ω : lim

n→∞
1
N

N∑
n=1

exp (2π inω)cn �= 0

}

is called the frequency module for c and it is denoted by
M(c). The frequency module is always countable and c

can be written as a uniform limit of Fourier series where
the frequencies are chosen among M(c). For an almost
periodic Jacobi matrix H with coefficients a = (an)∞n=1
and b = (bn)∞n=1, the frequency module M(H) is the
module generated by M(a) and M(b). It was shown in
Theorem III.1 in [Delyon and Souillard 83] that for an
almost periodic H , the values of IDS in gaps belong to
M(H). Moreover (see e.g., Theorem 2.4 in [Geronimo
88]), an asymptotically almost periodic Jacobi matrix has

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

x 10
−14

n

R
n

Model 1

Model 2

Model 3

Model 4

Figure . Errors associated with eigenvectors.
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Figure . The values of outdiagonal elements of Jacobi matrices at the indices of the form 2s.

the same DOS measure with the almost periodic limit of
it.

In order to examine almost periodicity of the an’s
for μK(γ ), we computed the discrete Fourier transform
(ân)2

14

n=1 for the first 214 coefficients for each model where
frequencies run from 0 to 1. We normalized |̂a|2 divid-
ing it by

∑214
n=1 |̂an|2. We plotted (see Figure 5) this

normalized power spectrum while we did not plot the
peak at 0, by detrending the transform.

There are only a small number of peaks in each case
compared to 214 frequencies which points out almost
periodicity of coefficients. We consider onlyModel 1 here
although we have similar pictures for the other models.
The highest 10 peaks are at 0.5, 0.25, 0.75, 0.375, 0.625,

Figure . The ratios of outdiagonal elements of Jacobi matrices at the indices of the form 2s.
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Figure . Normalized power spectrum of the an’s for Model .

0.4375, 0.5625, 0.125, 0.875, 0.3125. All these values are
of the formm2−n where n ≤ 4. This is an important indi-
cator of almost periodicity as these frequencies are exactly
the values of IDS for HμK(γ )

in the gaps which appear ear-
lier in the construction of the Cantor set. The following
conjecture follows naturally from the above discussion.

Conjecture 3.3. For any γ , (an)∞n=1 forHμK(γ )
is asymptot-

ically almost periodic where the almost periodic limit has
frequency module equal to {m2−n}m,n∈{N0} modulo 1.

4. Widom factors

Let K ⊂ C be a non-polar compact set. Then the unique
monic polynomial Tn of degree n satisfying

‖Tn‖L∞(K) = min
{‖Pn‖L∞(K) :

Pn complex monic polynomial of degree n
}

is called the nth Chebyshev polynomial on K.
We define the nth Widom factor for the sup-norm

on K by Wn(K) = ||Tn||L∞(K)/(Cap(K))n. It is due to
Schiefermayr [Schiefermayr 08] that Wn(K) ≥ 2 if K ⊂
R. It is also known that (see e.g., [Fekete 23, Szegő 24])
‖Tn‖1/nL∞(K)

→ Cap(K) as n → ∞. This implies a theo-
retical constraint on the growth rate of Wn(K), that is
(1/n) logWn(K) → 0 as n → ∞. See for example [Totik
09, Totik 14, Totik andYuditskii 15] for further discussion.

Theorem 4.4 in [Goncharov and Hatinoğlu 15]
says that for each sequence (Mn)

∞
n=1 satisfying

limn→∞(1/n) logMn = 0, there is a γ such that

Wn(K(γ )) > Mn. On the other hand, for many com-
pact subsets of C (see e.g., [Andrievskii 16, Christiansen
et al., Totik and Varga, Widom 69]) the sequence of
Widom factors for the sup-norm is bounded. In par-
ticular, this is valid for Parreau–Widom sets on R, see
[Christiansen et al.]. It would be interesting to find (if
any) a non-Parreau–Widom set K on R such that it
is regular with respect to the Dirichlet problem and
(Wn(K))∞n=1 is bounded. Note that if K is a non-polar
compact subset of R which is regular with respect
to the Dirichlet problem, then by Theorem 4.2.3 in
[Ransford 95] and Theorem 5.5.13 in [Simon 11] we have
supp(μK ) = K. In this case, we haveW 2

n (μK ) ≤ Wn(K)

since ‖Qn(·; μK )‖L2(μK ) ≤ ‖Tn‖L2(μK ) ≤ ‖Tn‖L∞(K).
Therefore, it is possible to formulate the above
problem in a weaker form: Is there a non-Parreau–
Widom set K ⊂ R which is regular with respect
to the Dirichlet problem such that (W 2

n (μK ))∞n=1 is
bounded?

In [Alpan and Goncharov 15a], the authors follow-
ing [Barnsley et al. 83] studied (W 2

n (μJ( f )))
∞
n=1 where

f (z) = z3 − λz for λ > 3 and showed that the sequence
is unbounded. For this particular case, the Julia set is a
compact subset ofR which has zero Lebesgue measure. It
is always true for a polynomial autonomous Julia set J( f )
on R that supp(μJ( f )) = J( f ) since J( f ) is regular with
respect to the Dirichlet problem by [Mañé and Da Rocha
92]. Now, let us show that (W 2

n (μJ( f )))
∞
n=1 is unbounded

when f (z) = z2 − c and c > 2. These quadratic Julia sets
are zero Lebesguemeasure Cantor sets onR and therefore
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not Parreau–Widom. See [Brolin 65] for a deeper discus-
sion on this particular family.

Theorem 4.1. Let f (z) = z2 − c for c ≥ 2. Then
(W 2

n (μJ( f )))
∞
n=1 is bounded if and only if c = 2.

Proof. If c = 2 then J( f ) = [−2, 2]. This implies that
(W 2

n (μJ( f )))
∞
n=1 is bounded since J( f ) is Parreau–

Widom.
Let c �= 2. Then limn→∞ a2n = 0 (see e.g., Section

IV.5.2 in [Bessis 90]) where the an’s are the recur-
rence coefficients for μJ( f ) and Cap(J( f )) = 1 by [Brolin
65]. Since Q2n+1 (·; μJ( f )) = Q2

2n (·; μJ( f )) − c by Theo-
rem 3 in [Barnsley et al. 82], we have W 2

2n (μJ( f )) =
‖Q2n (·; μJ( f ))‖L2(μJ( f ) ) = √

c for all n ≥ 1. Moreover,

W 2
2n−1

(
μJ( f )

) = W 2
2n

(
μJ( f )

)
a2n

=
√
c

a2n
. (4–1)

Hence limn→∞W 2
2n−1(μJ( f )) = ∞ as limn→∞ a2n = 0.

This completes the proof. �

In [Alpan and Goncharov 16], it was shown that
(W 2

n (μK(γ )))
∞
n=1 is unbounded if γk ≤ 1/6 for all k ∈ N.

Wewant to examine the behavior of (W 2
n (μK(γ )))

∞
n=1 pro-

vided that K(γ ) is not Parreau–Widom. By [Alpan and
Goncharov 16], (W2n (μK(γ ))) ≥ √

2 for alln ∈ N0 for any
choice of γ . Hence,we also have

W 2
2n−1

(
μK(γ )

) = W 2
2n

(
μK(γ )

) Cap (
μK(γ )

)
a2n

≥
√
2Cap

(
μK(γ )

)
a2n

(4–2)

for all n ∈ N.
If we assume that Conjecture 3.1 and Conjecture

3.2 are correct then lim infn→∞ a2n = 0 as soon as
K(γ ) is not Parreau–Widom. If lim infn→∞ a2n = 0
then lim supn→∞W2n−1(μK(γ )) = ∞ by (4–2). Thus, the
numerical experiments indicate the following:

Conjecture 4.2. K(γ ) is a Parreau–Widom set if and
only if (W 2

n (μK(γ )))
∞
n=1 is bounded if and only if

(Wn(K(γ )))∞n=1 is bounded.

Let K be a union of finitely many compact non-
degenerate intervals on R and ω be the Radon–Nikodym
derivative of μK with respect to the Lebesgue mea-
sure on the line. Then μK satisfies the Szegő condi-
tion:

∫
K ω(x) logω(x) dx > −∞. This implies by Corol-

lary 6.7 in [Christiansen et al. 11] that (W 2
n (μK ))∞n=1 is

asymptotically almost periodic. If K is a Parreau–Widom
set, μK satisfies the Szegő condition by [Pommerenke
76]. We plotted (see Figure 6) the Widom–Hilbert fac-
tors for Model 1 for the first 220 values, and it seems
that lim supW 2

n (μ(K(γ ))) �= supW 2
n (μ(K(γ ))). For Model

1, we plotted (see Figure 7) the power spectrum for
(W 2

n (μK ))2
14

n=1 where we normalized |Ŵ 2|2 dividing it by∑214
n=1 |Ŵ 2

n (μK )|2. Frequencies run from 0 to 1 here and
we did not plot the big peak at 0.

Clearly, there are only a few peaks as in
(see Figure 5) which is an important indica-
tor of almost periodicity. The highest 10 peaks
are at 0.5, 0.00006103515625, 0.25, 0.75, 0.125,
0.875, 0.375, 0.625, 0.0625, 0.9375. These values are
quite different than those of peaks in Figure 5. This may
be an indicator of a different frequency module of the
almost periodic limit. By Conjecture 4.2, (W 2

n (μK(γ )))
∞
n=1

is unbounded and cannot be asymptotically almost peri-
odic if K(γ ) is not Parreau–Widom. We make the
following conjecture:

Conjecture 4.3. (W 2
n (μK(γ )))

∞
n=1 is asymptotically almost

periodic if and only if K(γ ) is Parreau–Widom. If
K(γ ) is Parreau–Widom, then the almost periodic limit’s
frequency module includes the module generated by
{m2−n}m,n∈{N0} modulo 1.

5. Spacing properties of orthogonal
polynomials and further discussion

For a measure μ having support on R, let Zn(μ) := {x :
Qn(x; μ) = 0}. For n > 1 with n ∈ N, we define Mn(μ)

by

Mn(μ) := inf
x,x′∈Zn(μ)

x �=x′
|x − x′|.

For a given γ = (γk)
∞
k=1, let us enumerate the elements

of ZN (μK(γ )) by x1,N < · · · < xN,N . The behaviors of
(MN (μK(γ )))

∞
N=1, in other words, the global behavior of

the spacing of the zeros, were investigated in [Alpan 16].
Here, we numerically study some aspects of the local
behavior of the zeros.

We consider only Model 1 since the calcula-
tions give similar results for the other models. For
N = 23, 24, . . . , 214, let An,N := |x2n,N − x2n−1,N |
where n ∈ {1, . . . ,N/2}. We computed (see Figure 8)
AN := maxn,m∈{1,...,N/2}

An,N
Am,N

for each such N.
(A2n )

14
n=3 increases fast and this indicates that (A2n )

∞
n=2

is unbounded.
For N = 214 and s = 2, s = 6 we plotted (see Figure 9)

As,N/A1,N . These ratios tend to converge fast.
In the next conjecture, we exclude the case of small

γ for the following reason: Let γ = (γk)
∞
k=1 satisfy∑∞

k=1 γk = M < ∞ with γk ≤ 1/32 for all k ∈ N and
δk := γ1 · · · γk. Then Aj,2k ≤ exp (16M)δk−1 for all k >

1 by Lemma 6 in [Goncharov 14]. By Lemma 4 and
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Figure . Widom–Hilbert factors for Model .

Lemma 6 in [Goncharov 14], we conversely have Aj,2k ≥
(7/8)δk−1. Therefore, A2k ≤ (8/7) exp (16M). Hence,
(A2n )

∞
n=2 is bounded.

Conjecture 5.1. For each γ = (γk)
∞
k=1 with infk γk > 0,

(A2k )
∞
k=1 is an unbounded sequence. If s = 2k for some

k ∈ N, there is a c0 ∈ R depending on k such that

lim
n→∞

As,2n

A1,2n
= c0.

For the parameters c > 3, HμJ( f ) is almost periodic
where f (z) = z2 − c, see [Bellissard et al. 82]. It was

Figure . Normalized power spectrum of theW 2
n (μK(γ ))’s for Model .
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Figure . Maximal ratios of the distances between adjacent zeros.

conjectured in p. 123 of [Bellissard 92] (see also
[Bellissard et. al 05] and [Peherstorfer et. al. 06] for later
developments concerning this conjecture) that HμJ( f ) is
always almost periodic as soon as c > 2. Therefore, if
this conjecture is true, then we have the following: HμJ( f )

is almost periodic if and only if J( f ) is non-Parreau–
Widom.

We did not make any distinction between asymptotic
almost periodicity and almost periodicity in Sections 3
and 4 since these two cases are indistinguishable numeri-
cally. But we remark that if lim inf an �= 0 then the asymp-
totics lim j→∞ a j·2s+n = an cease to hold immediately. We
donot expectHμK(γ )

to be almost periodic for the Parreau–
Widom case for that reason. For a parameter γ = (γs)

∞
s=1

Figure . Ratios of the distances between prescribed adjacent zeros.
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such that lim j→∞ a j·2s+n = an holds for each s and n
it is likely that HμK(γ )

is almost periodic. These asymp-
totics hold only for the non-Parreau–Widom case, but it is
unclear that if these hold for all parameters making K(γ )

non-Parreau–Widom.
Hausdorff dimension of a unit Borel measure μ

supported on C is defined by dim(μ) := inf{HD(K) :
μ(K) = 1}whereHD(·) stands for the Hausdorff dimen-
sion of the given set. Hausdorff dimension of equilibrium
measures were studied for many fractals (see [Makarov
99] for an account of the previous results) and in par-
ticular for autonomous polynomials Julia sets (see e.g.,
[Przytycki 85]). If f is a nonlinear monic polyomial and
J( f ) is a Cantor set then by p. 176 in[Przytycki 85]
(see also p. 22 in [Makarov 99]) we have dim(μJ( f )) <

1. For K(γ ),
∑∞

s=1
√

εs < ∞ implies that dim(μK(γ )) =
1 since μ(K(γ )) and the Lebesgue measure restricted to
K(γ ) (see 4.6.1 in [Sodin and Yuditskii 97]) are mutually
absolutely continuous. Moreover, our numerical exper-
iments suggest that K(γ ) has zero Lebesgue measure
for non-Parreau–Widom case. It may also be true that
dim(μK(γ )) < 1 for this particular case. Hence, it is an
interesting problem to find a systematic way of calculat-
ing the dimension of equilibrium measures of K(γ ) and
generalized Julia sets in general.
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